If it's not what You are looking for type in the equation solver your own equation and let us solve it.
360^3=1/3*72^2h
We move all terms to the left:
360^3-(1/3*72^2h)=0
Domain of the equation: 3*72^2h)!=0We add all the numbers together, and all the variables
h!=0/1
h!=0
h∈R
-(1/3*72^2h)+46656000=0
We get rid of parentheses
-1/3*72^2h+46656000=0
We multiply all the terms by the denominator
46656000*3*72^2h-1=0
Wy multiply elements
10077696000h^2*7-1=0
Wy multiply elements
70543872000h^2-1=0
a = 70543872000; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·70543872000·(-1)
Δ = 282175488000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{282175488000}=\sqrt{2687385600*105}=\sqrt{2687385600}*\sqrt{105}=51840\sqrt{105}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-51840\sqrt{105}}{2*70543872000}=\frac{0-51840\sqrt{105}}{141087744000} =-\frac{51840\sqrt{105}}{141087744000} =-\frac{\sqrt{105}}{2721600} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+51840\sqrt{105}}{2*70543872000}=\frac{0+51840\sqrt{105}}{141087744000} =\frac{51840\sqrt{105}}{141087744000} =\frac{\sqrt{105}}{2721600} $
| 7x-2=61;x= | | x^2+(4x)^2=10.5^2 | | k-6k=8-3k | | 4+2y=19 | | 15x-195=2x-6-3 | | 9(w+6)=-54 | | 2=d+3/7 | | 2y(4y+3)-9=0 | | 3a=18-2a | | 8x-17=337+5x | | 0.5x-12=6+5x | | 46x=8x^2 | | 4(a-10)-19=-63 | | 4(a—10)-19=63 | | 24+4x=-3x+6 | | 2p-9=15 | | -14=7+7(x-1) | | 24+4x=3(−x+2)−17 | | (8x+9)=9x | | x/2=-6/2x+11 | | 10n=75 | | 18.00+3.50x=13.00+4.75x | | (2p+9)=4p | | 60-8y-y=-6 | | -n/9=-4 | | n+9=-11 | | 7.5=-3w | | n-23=7 | | 3y-1+y+4+2y=19 | | 60-2x=6+x | | 15x^2-29x+14=0 | | 15x^2+29x+14=0 |